Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 2» г. Алексин Тульской области

«Согласовано»	«Рассмотрено»	«Утверждено»
Зам. директора по УВР	на заседании ШМО	Директор МБОУ «СОШ №2»
МБОУ «СОШ №2»	Руководитель ШМО /Якушина О.В.	/Свальнова И.Н.
/Шестова О.А		Приказ № 1-д
«27»августа2022г.	«30»августа2022г.	«30»августа2022г.

Рабочая программа среднего общего образования по физике

> группа учителей физики Класс: 7-9

Пояснительная записка

- Нормативно-правовые документы, на основании которых разработана рабочая программа:
- Федеральный закон Российской Федерации от 29 декабря 2012 № 273-ФЗ «Об образовании в Российской Федерации».
- Федерального компонента государственного образовательного стандарта основного общего образования;
- Примерной программы основного общего образования;
- Приказ Минтруда России от 18.10.2013 г. № 544 «Об утверждении профессионального стандарта «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)» (Зарегистрировано в Минюсте России 06.12.2013 г. № 30550).
- Постановления Главного государственного санитарного врача РФ от 29 декабря 2021 г. № 189 г. Москва « Об утверждении СанПиН 2.4.2.2821-20 « Санитарно эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».
- Приказ Министерства образования и науки Российской Федерации от 31.03.2014 № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями).
- Устав МБОУ «СОШ №2»
- Образовательная программа МБОУ «СОШ №2»
- Положение о рабочей программе МБОУ «СОШ №2»
- Учебный план МБОУ "СОШ №2"
- КУГ МБОУ «СОШ №2»

Данная рабочая программа составлена на основе примерной программы по физике основного общего образования (7-9) и авторской программы Е.М. Гутника, А.В. Перышкина. Программа учитывает основные идеи и положения основной образовательной программы основного общего образования, преемственность с ООП начального общего образования. Программа детализирует и раскрывает содержание стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения физики, которые определены стандартом.

Программа предполагает использование следующих учебников по физике:

- 1. Учебник: А.В. Пёрышкин, «Физика 7 класс», «Физика 8класс», А.В. Пёрышкин, Е.М. Гутник «Физика 9класс» М., «Дрофа», 2018г.
- 2. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. В.И. Лукашик, В.М. Мейлер, Е.В. Иванова Просвещение, 2018.

Цель

Развитие личностных способностей ребенка, становление его полноценной, социально активной, конкурентоспособной личностью, обладающей набором ключевых компетенций, общеучебных универсальных умений и действий через содержание образования.

Достижение поставленной цели происходит через реализацию следующих задач:

Задачи

- *освоение знаний* о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- *овладение умениями* проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- *воспитание* убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 242 часа для обязательного изучения физики на ступени основного общего образования. В том числе в 7, 8 классах по 70 учебных часов из расчета 2 учебных часа в неделю и IX классах по 102 учебных часа из расчета 3 учебных часа в неделю.

Планируемые результаты освоения учебного предмета

Программа обеспечивает достижение обучающимися 9 класса следующих результатов.

Личностными результатами изучения предмета «Физика» являются следующие:

- формирование ответственного отношения к учению, готовности к саморазвитию, осознанному выбору с учетом познавательных интересов;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и учитывающего многообразие современного мира;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- осознание российской гражданской идентичности; чувства патриотизма, любви к своей местности, своему региону, своей стране;
- мотивация образовательной деятельности на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений.

Метапредметным результатом изучения курса «Физика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно приобретать новые знания и практические умения;
- управлять своей познавательной деятельностью;
- организовывать свою деятельность;
- определять цели и задачи учебной деятельности;
- самостоятельно обнаруживать и формулировать учебную проблему;
- выдвигать версии решения проблемы;
- составлять индивидуально или в группе план решения проблемы (выполнения проекта);
- выбирать средства достижения цели и применять их на практике;
- оценивать достигнутые результаты.

Познавательные УУД:

- анализировать, структурировать информацию, факты и явления;
- выявлять причины и следствия простых явлений;
- осуществлять сравнение и классификацию, самостоятельно выбирая критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей;
- создавать схематические модели с выделением существенных характеристик объекта;
- составлять тезисы, простые и сложные планы изученного текста;
- преобразовывать информацию из одного вида в другой (таблицу в текст и т. п.);
- определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать ее достоверность;
- представлять собранную информацию в виде выступления или презентации.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом);
- в дискуссии уметь выдвинуть аргументы и контраргументы;
- адекватно использовать речевые средства для дискуссии и аргументации своей позиции;
- учиться критично относиться к своему мнению, с достоинством признавать ошибочность и корректировать его;
- понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
- уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Предметным результатом изучения курса «Физика» является сформулированность следующих умений:

- объяснять, для чего изучают физику;
- формировать представления о закономерной связи и познании явлений природы; о системообразующей роли физики для развития других естественных наук;
- формировать первоначальные представления о физической сущности явлений природы (тепловых, электромагнитных, оптических), видах материи (вещество и поле), усваивать основные идеи атомного строения вещества, овладевать понятийным аппаратом и символическим языком физики;
- приобретать опыт применения научных методов познания, наблюдения физических явлений, простых экспериментальных исследований, прямых и косвенных измерений с использованием измерительных приборов, понимать неизбежность погрешностей любых измерений;
- понимать физические основы и принцип действия машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияние их на окружающую среду, осознавать возможные причины техногенных катастроф;
- овладевать основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- формировать теоретическое мышление на основе умения устанавливать факты, различать прчины и следствия, строить модели и выдвигать гипотезы, выводить из экспериментальных фактов и теоретических моделей физические законы;
- развивать умение планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- объяснять значение ключевых понятий.

К концу 9 класса в результате освоения программы по физике обучающийся научится:

• соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

- характеризовать понятия (система отсчета, относительность механического движения, невесомость и перегрузки, механические волны, звук, инфразвук и ультразвук, электромагнитные волны, инфракрасные волны, ультрафиолетовые волны, рентгеновское излучение, шкала электромагнитных волн, спектры испускания и поглощения; альфа-, бета- и гамма-излучения, изотопы, ядерная и термоядерная энергетика);
- различать явления (равномерное и неравномерное прямолинейное движение, равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, равновесие материальной точки, реактивное движение, невесомость, колебательное движение (гармонические колебания, затухающие колебания, вынужденные колебания), резонанс, волновое движение (звук), отражение звука, дисперсия света, отражение и преломление света, полное внутреннее отражение света, сложение спектральных цветов, естественная радиоактивность, возникновение линейчатого спектра излучения по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение при равноускоренном прямолинейном движении, центростремительное ускорение, угловая скорость, перемещение, пройденный путь и скорость при криволинейном движении, сила тяжести, ускорения свободного падения с учетом зависимости от широты местности, вес тела, центр тяжести твердого тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия, кинетическая энергия, полная механическая энергия, период и частота колебаний, период математического и пружинного маятников, длина волны, громкость и высота тона, скорость света, показатель преломления среды); при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях; при этом различать словесную формулировку закона и его математическое выражение;
- объяснять физические процессы и свойства тел: выявлять причинно следственные связи, строить объяснение из 2–3 логических шагов с опорой на 2–3 изученных свойства физических явлений, физических закона или закономерности;
- решать расчетные задачи (опирающиеся на систему из 2–3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выбирать законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реалистичность полученного значения физической величины;
- проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии; зависимость

периода колебаний пружинного маятника от массы груза и жесткости пружины и независимость от амплитуды малых колебаний): самостоятельно собирать установку из избыточного набора оборудования; описывать ход опыта и формулировать выводы;

- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины; обосновывать выбор способа измерения/измерительного прибора;
- проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени при равноускоренном движении без начальной скорости; периода колебаний математического маятника от длины нити): самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, частота и период колебаний математического и пружинного маятников, радиоактивный фон): планировать измерения; собирать экспериментальную установку, следуя предложенной инструкции; вычислять значение величины и анализировать полученные результаты с учетом заданной погрешности измерений;
- соблюдать правила безопасного труда при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твердое тело, планетарная модель атома, нуклонная модель атомного ядра;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: эхолот, перископ, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности; использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебно-практических задач; приводить примеры практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры вклада российских (в том числе: К.Э. Циолковский, С.П. Королев, Д.Д. Иваненко,, И.В. Курчатов) и зарубежных (в том числе: И. Ньютон, Дж. Максвелл, Г. Герц, В. Рентген, А. Беккерель, М. Склодовская-Кюри, Э. Резерфорд) ученых-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;
- создавать собственные письменные и устные сообщения на основе информации из нескольких источников, грамотно используя понятийный аппарат изучаемого раздела физики и сопровождая выступление презентацией с учетом особенностей аудитории.

Обучающийся получит возможность научиться:

• осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;

использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез

- и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить прямые и косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Содержание учебного предмета

В курс физики 7 класса входят следующие разделы:

- 1.Введение
- 2. Первоначальные сведения о строении вещества.
- 3. Взаимодействие тел.
- 4. Давление твердых тел, жидкостей и газов.
- 5. Работа и мощность. Энергия.

В курс физики 8 класса входят следующие разделы:

- 2. Тепловые явления.
- 2. Изменение агрегатных состояний вещества
- 3. Электрические явления.
- 3. Электрические явления.
- 4. Световые явления.

В курс физики 9 класса входят следующие разделы:

- 1. Законы взаимодействия и движения тел
- 2. Механические колебания и волны. Звук.
- 3.Электромагнитное поле
- 4. Строение атома и атомного ядра. Использование энергии атомных ядер.

Основное содержание (248 ч) 7 класс (70 часов, 2 часа в неделю) Предмет и методы физики. Экспериментальный метод изучения природы. Измерение физических величин.

Погрешность измерения. Обобщение результатов эксперимента.

Использование простейших измерительных приборов. Физика и техника.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений.

Физические приборы.

Фронтальная лабораторная работа.

1. Измерение физических величин с учетом абсолютной погрешности.

II. Первоначальные сведения о строении вещества. (6 часов.)

Гипотеза о дискретном строении вещества. Молекулы. Непрерывность и хаотичность движения частиц вещества.

Диффузия. Броуновское движение. Модели газа, жидкости и твердого тела.

Взаимодействие частиц вещества. Взаимное притяжение и отталкивание молекул.

Три состояния вещества.

Демонстрации

Сжимаемость газов.

Диффузия в газах и жидкостях.

Модель хаотического движения молекул.

Модель броуновского движения.

Сохранение объема жидкости при изменении формы сосуда.

Сцепление свинцовых цилиндров.

Фронтальная лабораторная работа.

2. Измерение размеров малых тел.

III. Взаимодействие тел. (21 час.)

Механическое движение. Равномерное и не равномерное движение. Скорость.

Расчет пути и времени движения. Траектория. Прямолинейное движение.

Взаимодействие тел. Инерция. Масса. Плотность.

Измерение массы тела на весах. Расчет массы и объема по его плотности.

Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела.

Связь между силой тяжести и массой тела. Динамометр. Сложение двух сил, направленных по одной прямой. Трение.

Упругая деформация.

Демонстрации

Равномерное прямолинейное движение.

Относительность движения.

Явление инерции.

Взаимодействие тел.

Зависимость силы упругости от деформации пружины.

Сложение сил.

Сила трения.

Фронтальная лабораторная работа.

- 3. Изучение зависимости пути от времени при прямолинейном равномерном движении. Измерение скорости.
- 4. Измерение массы тела на рычажных весах.
- 5. Измерение объема тела.
- 6. Измерение плотности твердого вещества.

- 7. Градуирование пружины и измерение сил динамометром.
- 8. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины.
- 9. Исследование зависимости силы трения скольжения от силы нормального давления.
- 10. Определение центра тяжести плоской пластины.

IV.Давление твердых тел, жидкостей и газов. (23 часа)

Давление. Опыт Торричелли.

Барометр-анероид.

Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления.

Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры.

Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами.

Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда.

Сообщающие сосуды. Архимедова сила. Гидравлический пресс.

Плавание тел. Плавание судов. Воздухоплавание.

<u>Демонстрации</u>

Зависимость давления твердого тела на опору от действующей силы и площади опоры.

Обнаружение атмосферного давления.

Измерение атмосферного давления барометром - анероидом.

Закон Паскаля.

Гидравлический пресс.

Закон Архимеда.

Фронтальная лабораторная работа.

- 11. Измерение давления твердого тела на опору.
- 12. Измерение выталкивающей силы, действующей на погруженное в жидкость тело.
- 13. Выяснение условий плавания тела в жидкости.

V. Работа и мощность. Энергия. (12 часов.)

Работа. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов.

Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе.

Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Демонстрации

Простые механизмы.

Фронтальная лабораторная работа.

- 14. Выяснение условия равновесия рычага.
- 15. Измерение КПД при подъеме по наклонной плоскости.

8 класс

(70 часов, 2 часа в неделю)

І. Тепловые явления. Изменение агрегатных состояний вещества (26 часов)

Внутренняя энергия. Тепловое движение. Температура. Теплопередача. Необратимость процесса теплопередачи.

Связь температуры вещества с хаотическим движением его частиц. Способы изменения внутренней энергии.

Теплопроводность.

Количество теплоты. Удельная теплоемкость.

Конвекция.

Излучение. Закон сохранения энергии в тепловых процессах.

Плавление и кристаллизация. Удельная теплота плавления. График плавления и отвердевания.

Преобразование энергии при изменениях агрегатного состояния вещества.

Испарение и конденсация. Удельная теплота парообразования и конденсации.

Работа пара и газа при расширении.

Кипение жидкости. Влажность воздуха.

Тепловые двигатели.

Энергия топлива. Удельная теплота сгорания.

Агрегатные состояния. Преобразование энергии в тепловых двигателях.

КПД теплового двигателя.

Демонстрации

Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче.

Теплопроводность различных материалов.

Конвекция в жидкостях и газах.

Теплопередача путем излучения.

Сравнение удельных теплоемкостей различных веществ.

Явление испарения.

Кипение воды.

Постоянство температуры кипения жидкости.

Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром.

Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины.

Фронтальная лабораторная работа.

- 1. Исследование изменения со временем температуры остывающей воды
- 2. Сравнение количеств теплоты при смешивании воды разной температуры.
- 3. Измерение удельной теплоемкости твердого тела.
- 4. Измерение относительной влажности воздуха

II.Электрические явления. (26 часов)

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Дискретность электрического заряда. Электрон.

Закон сохранения электрического заряда. Электрическое поле. Электроскоп. Строение атомов.

Объяснение электрических явлений.

Проводники и непроводники электричества.

Действие электрического поля на электрические заряды.

Постоянный электрический ток. Источники электрического тока.

Носители свободных электрических зарядов в металлах, жидкостях и газах. Электрическая цепь и ее составные части. Сила тока. Единицы силы тока. Амперметр. Измерение силы тока.

Напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения.

Сопротивление. Единицы сопротивления.

Закон Ома для участка электрической цепи.

Расчет сопротивления проводников. Удельное сопротивление.

Примеры на расчет сопротивления проводников, силы тока и напряжения.

Реостаты.

Последовательное и параллельное соединение проводников. Действия электрического тока

Закон Джоуля-Ленца. Работа электрического тока.

Мощность электрического тока.

Единицы работы электрического тока, применяемые на практике.

Счетчик электрической энергии. Электронагревательные приборы.

Расчет электроэнергии, потребляемой бытовыми приборами.

Нагревание проводников электрическим током.

Количество теплоты, выделяемое проводником с током.

Лампа накаливания. Короткое замыкание.

Предохранители.

Демонстрации

Электризация тел.

Два рода электрических зарядов.

Устройство и действие электроскопа.

Проводники и изоляторы.

Электризация через влияние

Перенос электрического заряда с одного тела на другое

Закон сохранения электрического заряда.

Источники постоянного тока.

Составление электрической цепи.

Электрический ток в электролитах. Электролиз.

Электрический разряд в газах.

Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи.

Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

Реостат и магазин сопротивлений.

Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи.

Фронтальная лабораторная работа.

- 5. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 6.Измерение напряжения на различных участках электрической цепи.
- 7. Регулирование силы тока реостатом.

- 8. Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления проводника
- 9. Измерение работы и мощности электрического тока.

III. Электромагнитные явления (7 часов)

Магнитное поле. Графическое изображение магнитного поля. Электромагнит. Постоянные магниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электрический двигатель

Демонстрации

Опыт Эрстеда.

Магнитное поле тока.

Действие магнитного поля на проводник с током.

Устройство электродвигателя.

Фронтальная лабораторная работа.

- 10. Сборка электромагнита и испытание его действия
- 11. Изучение электрического двигателя постоянного тока.

IV.Световые явления. (9 часов)

Источники света.

Прямолинейное распространение, отражение и преломление света. Луч. Закон отражения света.

Плоское зеркало. Линза. Оптическая сила линзы. Изображение, даваемое линзой.

Измерение фокусного расстояния собирающей линзы.

Оптические приборы.

Глаз и зрение. Очки.

Демонстрации

Источники света.

Прямолинейное распространение света.

Закон отражения света.

Изображение в плоском зеркале.

Преломление света.

Ход лучей в собирающей линзе.

Ход лучей в рассеивающей линзе.

Получение изображений с помощью линз.

Принцип действия проекционного аппарата и фотоаппарата.

Модель глаза.

Фронтальная лабораторная работа.

- 12. Исследование зависимости угла отражения от угла падения света.
- 13. Исследование зависимости угла преломления от угла падения света
- 14. Измерение фокусного расстояния собирающей линзы. Получение изображения с помощью линзы.

Физика, 9 класс

Законы взаимодействия и движения тел (38 часов)

Материальная точка. Система отсчета. Перемещение. Определение координаты движущегося тела. Перемещение при прямолинейном равномерном движении. Решение задач. Прямолинейное равноускоренное движение. Ускорение. Скорость

прямолинейного равноускоренного движения. График скорости. Решение задач на скорость и ускорение. Перемещение при прямолинейном равноускоренном движении. Перемещение тела при прямолинейном равноускоренном движении без начальной скорости. Относительность движения. Решение задач на перемещение. Инерциальные системы отсчета. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Движение тела, брошенного вертикально вверх. Закон всемирного тяготения. Ускорение свободного падения на Земле и других небесных телах. Движение тела по окружности. Искусственные спутники Земли. Импульс тела. Закон сохранения импульса. Реактивное движение. Ракеты. Вывод закона сохранения полной механической энергии.

Лабораторные работы:

Лабораторная работа № 1. «Исследование равноускоренного движения без начальной скорости».

Лабораторная работа № 2. «Измерение ускорения свободного падения».

Контрольные работы:

Контрольная работа № 1. «Основы кинематики»

Контрольная работа № 2. «Основы динамики».

Механические колебания и волны, звук (12 часов)

Колебательное движение. Свободные колебания. Величины, характеризующие колебательное движение. Превращение энергии при колебательном движении. Гармонические колебания. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в среде. Волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Источники звука. Звуковые колебания. Высота, тембр и громкость звука. Распространение звука. Отражение звука. Эхо. Звуковой резонанс.

Лабораторные работы:

Лабораторная работа № 3 «Исследование зависимости периода и частоты свободных колебаний нитяного маятника от его длины».

Контрольные работы:

Контрольная работа № 3 « Механические колебания и волны, звук».

Электромагнитное поле (22 часа)

Магнитное поле и его графическое изображение. Направление тока и направление линий его магнитного поля. Правило буравчика. Правило правой руки. Обнаружение магнитного поля по его действию на электрический ток. Сила Ампера. Правило левой руки. Индукция магнитного поля. Магнитный поток. Явление электромагнитной

индукции. Направление индукционного тока. Правило Ленца. Получение и передача переменного электрического тока. Трансформатор. Электромагнитное поле. Электромагнитные волны. Электромагнитная природа света. Преломление света. Физический смысл показателя преломления. Дисперсия света. Цвета тел. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Лабораторные работы:

Лабораторная работа №4 «Изучение явления электромагнитной индукции»

Контрольные работы:

Контрольная работа № 4 « Электромагнитное поле».

Строение атома и атомного ядра. Использование энергии атомных ядер (15 часов)

Радиоактивность. Опыт Резерфорда. Модели атомов Томсона и Резерфорда. Радиоактивные превращения атомных ядер. Экспериментальные методы исследования частиц. Открытие протона и нейтрона. Состав атомного ядра. Ядерные силы. Энергия связи ядра. Дефект масс. Деление ядер урана. Цепная реакция. Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию. Атомная энергетика. Биологическое действие радиации. Закон радиоактивного распада. Термоядерная реакция.

Лабораторные работы:

Лабораторная работа № 5 «Изучение треков заряженных частиц по готовым фотографиям».

Контрольные работы:

Контрольная работа № 5 « Строение атома и атомного ядра».

Строение и эволюция Вселенной (5 часа)

Состав, строение и происхождение Солнечной системы. Большие планеты Солнечной системы. Малые тела Солнечной системы. Строение, излучения и эволюция Солнца и звезд. Строение и эволюция вселенной.

Повторение (7 час)

Повторение механических, электромагнитных, оптических, квантовых явлений. Повторение материалов 7 и 8 классов.

Резерв (3 часа)

Тематическое планирование 7 класс

№ п/п	Наименование раздела	Кол-во часов
1	Введение	4
2	Первоначальные сведения о строении вещества	6
3	Взаимодействие тел	21
4	Давление твердых тел, жидкостей и газов	23
5	Работа и мощность. Энергия	12
6	Повторение	4
	Итого	70 ч.

8 класс

№ п/п	Наименование раздела	Кол-во часов
1	Тепловые явления. Изменение агрегатных состояний	26
	вещества	
2	Электрические явления	26
3	Электромагнитные явления	7
4	Световые явления	9
5	Повторение	2
	Итого	70 ч.

9 класс

No	Наименование	Кол-во часов
п/п	раздела	
1	Законы взаимодействия и движения тел	38
2	Механические колебания и волны. Звук	12
3	Электромагное поле	22
4	Строение атома и атомного ядра. Использование	15
	энергии атомных ядер	
5	Строение и эволюция вселенной	5
6	Повторение	7
7	Резерв	3
	Итого	102ч.

Требования к уровню подготовки учащихся:

- 1. Владеть методами научного познания.
- 1.1. Собирать установки для эксперимента по описанию, рисунку или схеме и проводить наблюдения изучаемых явлений.
- 1.2. Измерять: температуру, массу, объем, силу (упругости, тяжести, трения скольжения), расстояние, промежуток времени, силу тока, напряжение, плотность, период колебаний маятника, фокусное расстояние собирающей линзы.

- 1.3. Представлять результаты измерений в виде таблиц, графиков и выявлять эмпирические закономерности:
- изменения координаты тела от времени;
- силы упругости от удлинения пружины;
- силы тяжести от массы тела;
- силы тока в резисторе от напряжения;
- массы вещества от его объема;
- температуры тела от времени при теплообмене.
- 1.4. Объяснить результаты наблюдений и экспериментов:
- смену дня и ночи в системе отсчета, связанной с Землей, и в системе отсчета, связанной с Солнцем;
- большую сжимаемость газов;
- малую сжимаемость жидкостей и твердых тел;
- процессы испарения и плавления вещества;
- испарение жидкостей при любой температуре и ее охлаждение при испарении.
- 1.5. Применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений:
- положение тела при его движении под действием силы;
- удлинение пружины под действием подвешенного груза;
- силу тока при заданном напряжении;
- значение температуры остывающей воды в заданный момент времени.
- 2. Владеть основными понятиями и законами физики.
- 2.1. Давать определения физических величин и формулировать физические законы.
- 2.2. Описывать:
- физические явления и процессы;
- изменения и преобразования энергии при анализе: свободного падения тел, движения тел при наличии трения, колебаний нитяного и пружинного маятников, нагревания проводников электрическим током, плавления и испарения вещества.
- 2.3. Вычислять:
- равнодействующую силу, используя второй закон Ньютона;
- импульс тела, если известны скорость тела и его масса;
- расстояние, на которое распространяется звук за определенное время при заданной скорости;
- кинетическую энергию тела при заданных массе и скорости;
- потенциальную энергию взаимодействия тела с Землей и силу тяжести при заданной массе тела;
- энергию, поглощаемую (выделяемую) при нагревании (охлаждении) тел;
- энергию, выделяемую в проводнике при прохождении электрического тока (при заданных силе тока и напряжении).
- 2.4. Строить изображение точки в плоском зеркале и собирающей линзе.
- 3. Воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической).
- 3.1. Называть:
- источники электростатического и магнитного полей, способы их обнаружения;
- преобразования энергии в двигателях внутреннего сгорания, электрогенераторах, электронагревательных приборах.
- 3.2. Приводить примеры:

- относительности скорости и траектории движения одного и того же тела в разных системах отсчета;
- изменения скорости тел под действием силы;
- деформации тел при взаимодействии;
- проявления закона сохранения импульса в природе и технике;
- колебательных и волновых движений в природе и технике;
- экологических последствий работы двигателей внутреннего сгорания, тепловых, атомных и гидроэлектростанций;
- опытов, подтверждающих основные положения молекулярно-кинетической теории.
- 3.3. Читать и пересказывать текст учебника.
- 3.4. Выделять главную мысль в прочитанном тексте.
- 3.5. Находить в прочитанном тексте ответы на поставленные вопросы.
- 3.6. Конспектировать прочитанный текст.
- 3.7. Определять:
- промежуточные значения величин по таблицам результатов измерений и построенным графикам;
- характер тепловых процессов: нагревание, охлаждение, плавление, кипение (по графикам изменения температуры тела со временем);
- сопротивление металлического проводника (по графику зависимости силы тока от напряжения);
- период, амплитуду и частоту (по графику колебаний);
- по графику зависимости координаты от времени: координату времени в заданный момент времени; промежутки времени, в течение которых тело двигалось с постоянной, увеличивающейся, уменьшающейся скоростью; промежутки времени действия силы.
- 3.8. Сравнивать сопротивления металлических проводников (больше—меньше) по графикам зависимости силы тока от напряжения.

Система контроля за уровнем учебных достижений учащихся в процессе реализации данной рабочей учебной программы включает контрольные работы продолжительностью 45 минут каждая.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и физических диктантов (по 10-20 минут) по мере изучения учебного материала.

Форма итоговой аттестации в конце логически законченных блоков учебного материала:

контрольные работы: 5

Количество лабораторных работ: 9

Проверка знаний учащихся

Оценка ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает: верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий; правильное определение физических величин, их единиц и способов измерения. Правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может

установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов. Если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «**3**» ставиться, если учащийся: правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала. Умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул. Допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов. Оценка «4» ставится за работу, выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной негрубой грубой ошибки одной ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 недочётов.

Оценка «**2**» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка лабораторных работ

Оценка «5» ставится, если учащийся: выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «**4**» ставится, если выполнены требования к оценке «5», но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «**3**» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Оценка «1» ставится, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности груда.

Программное и учебно-методическое оснащение учебного плана:

- 1. Учебник: А. В. Пёрышкин, «Физика 7 класс», «Физика 8 класс», А. В. Пёрышкин, Е. М. Гутник «Физика 9 класс» М., «Дрофа», 2019г.
- 2. Физика. 7-9 классы: рабочие программы по учебникам А.В. Перышкина, Е.М. Гутник; авт.-сост. Г.Г. Телюкова. Волгоград: Учитель, 2019. 82 с.
- 3. Е. М. Гутник, Тематическое планирование к учебнику А. В. Пёрышкина «Физика 7-9 класс», М., «Дрофа», 2018 г.
- 4. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. В.И. Лукашик, В.М. Мейлер, Е.В. Иванова Просвещение, 2015.
- 5. Дидактические материалы «Физика 7 класс» А. Е. Марон, Е. А. Марон, «Дрофа» 2014 г.
- 6. Дидактические материалы «Физика 8 класс» А. Е. Марон, Е. А. Марон, «Дрофа» 2014 г.
- 7. Дидактические материалы «Физика 9 класс» А. Е. Марон, Е. А. Марон, «Дрофа» 2014 г.
- 8. Е.А. Марон Опорные конспекты и разноуровневые задания 7,8,9 класс Е.А. Марон Санкт-Петербург,-2014